Vol. 10 Núm. 2 (2019): Revista Aglala
Artículos Cientificos

Aplicación de la teoría neutrosófica para el tratamiento de la incertidumbre en la gestión del riesgo en la cadena de suministro

Rafael Rojas Gualdrón
Universidad Industrial de Santander
Florentin Smarandache
Universidad de Nuevo México Estados Unidos
Carlos Díaz Bohorquez
Universidad Industrial de Santander
Publicado diciembre 15, 2019
Palabras clave
  • Gestión de la cadena de suministro,
  • gestión del riesgo,
  • evaluación del riesgo,
  • cuantificación de la incertidumbre,
  • teoría neutrosófica
Cómo citar
[1]
Rojas Gualdrón, R., Smarandache, F. y Díaz Bohorquez, C. 2019. Aplicación de la teoría neutrosófica para el tratamiento de la incertidumbre en la gestión del riesgo en la cadena de suministro. Aglala. 10, 2 (dic. 2019), 1-19. DOI:https://doi.org/10.22519/22157360.1429.

Resumen

Debido a la creciente complejidad e interrelación de las cadenas de suministro modernas, la probabilidad de ocurrencia e impacto esperado de un riesgo se han vuelto difíciles o incluso imposibles de predecir, llevando a los investigadores a buscar minimizar el impacto que genera la incertidumbre en la gestión del riesgo en la cadena de suministro, la cual debido a su complejidad aún no presenta una solución absoluta y se encuentra abierta a nuevos aportes. El presente artículo se propone realizar una revisión de literatura con el objetivo de evaluar la aplicación de la teoría neutrosófica en el tratamiento de la incertidumbre enfocada en la gestión del riesgo en la cadena de suministro valiéndose para esto de una conceptualización sobre el riesgo, la incertidumbre, la cadena de suministro y la teoría neutrosófica, y buscando establecer una relación entre ellas al ilustrar como la incertidumbre del mundo real hace que los riesgos a los que se ve expuesta una cadena de suministro no puedan ser cuantificados por medio de la matemática convencional, pero si en el dominio de la neutrosofía. Se presentan además algunos artículos con aplicaciones exitosas en la toma de decisiones bajo algún  grado  de  incertidumbre  para  finalmente  llegar  a  uno  en  el  cual convergen estos conceptos, llegando a la conclusión de que por medio de esta nueva teoría es posible cuantificar los riesgos en función de la opinión cualitativa de expertos para ser incluida en modelos cuantitativos de optimización en la gestión de riesgos de la cadena de suministro.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdel-Baset, M., Chang, V., Gamal, A., & Smarandache, F. (2019). An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. COMPUTERS IN INDUSTRY, 106, 94–110. https://doi.org/10.1016/j.compind.2018.12.017
Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & Chilamkurti, N. (2019). A framework for risk assessment, management and evaluation: Economic tool for quantifying risks in supply chain. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 90, 489–502. https://doi.org/10.1016/j.future.2018.08.035
Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems.
Atanassov, K. (1999). Intuitionistic Fuzzy: Sets, Theory and Applications. Springer.
Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1–13.
Bal, M., Shalla, M., & Olgun, N. (2018). Neutrosophic triplet cosets and quotient groups. Symmetry, 10(4), 126.
Basha, S. H., Tharwat, A., Abdalla, A., & Hassanien, A. E. (2019). Neutrosophic rule-based prediction system for toxicity effects assessment of biotransformed hepatic drugs. EXPERT SYSTEMS WITH APPLICATIONS, 121, 142–157. https://doi.org/10.1016/j.eswa.2018.12.014
Bernstein, P. L. (1996). The new religion of risk management. Harvard Business Review, 74(2), 47.
Bower, J. (1970). Managing the Resource Allocation Process: A Study of Corporate Planning and Investment. Harvard Business School.
Celik, O. C., & Ellingwood, B. R. (2010). Seismic fragilities for non-ductile reinforced concrete frames – Role of aleatoric and epistemic uncertainties. Structural Safety, 32(1), 1–12. https://doi.org/10.1016/J.STRUSAFE.2009.04.003
Cheng, Q., Wang, S., & Yan, C. (2016). Robust optimal design of chilled water systems in buildings with quantified uncertainty and reliability for minimized life-cycle cost. ENERGY AND BUILDINGS, 126, 159–169. https://doi.org/10.1016/j.enbuild.2016.05.032
Colicchia, C., & Strozzi, F. (2012). Supply chain risk management: a new methodology for a systematic literature review. Supply Chain Management: An International Journal, 17(4), 403–418.
Council of Supply Chain Management Professionals. (2019). SCM Definitions and Glossary. https://doi.org/10.1007/978-1-349-95810-8_371
Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J., & Handfield, R. B. (2007). The severity of supply chain disruptions: design characteristics and mitigation capabilities. Decision Sciences, 38(1), 131–156.
Del Brio, B. M., & Molina, A. S. (2001). Redes neuronales y sistemas borrosos. Ra-ma.
Diehl, D., & Spinler, S. (2013). Defining a common ground for supply chain risk management - a case study in the fast-moving consumer goods industry. INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS, 16(4), 311–327. https://doi.org/10.1080/13675567.2013.813443
Duell, M., Grzybowska, H., Rey, D., & Waller, S. T. (2019). Strategic dynamic traffic assignment incorporating travel demand uncertainty. TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 7(1), 950–966. https://doi.org/10.1080/21680566.2018.1519468
Fishburn, P. C. (1984). Foundations of Risk Measurement. I. Risk As Probable Loss. Management Science, 30(4), 396–406. https://doi.org/10.1287/mnsc.30.4.396
Haibin, W., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite Study.
Haimes, Y. Y., Kaplan, S., & Lambert, J. H. (2002). Risk Filtering, Ranking, and Management Framework Using Hierarchical Holographic Modeling. Risk Analysis, 22(2), 383–397. https://doi.org/10.1111/0272-4332.00020
Haveman, H. (1992). Between a rock and a hard place: Organizational change and performance under conditions of fundamental environmental transformation. Administrative Science Quarterly, 37, 37–45.
Heckman, C. R., Hsieh, M. A., & Schwartz, I. B. (2015). Going With the Flow: Enhancing Stochastic Switching Rates in Multigyre Systems. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 137(3, SI). https://doi.org/10.1115/1.4027828
Henderson, R., & Clark, K. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 35, 9–31.
Hidalgo, P., Manzur, E., Olavarrieta, S., & Farías, P. (2007). Cuantificación de las distancias culturales entre paises: un análisis de Latinoamérica. Cuadernos de Administración, 20(33).
Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: a literature review. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 53(16), 5031–5069. https://doi.org/10.1080/00207543.2015.1030467
Kaplan, S. (2008). Framing Contests: Strategy Making Under Uncertainty. ORGANIZATION SCIENCE, 19(5), 729–752. https://doi.org/10.1287/orsc.1070.0340
Kester, Q. (2013). Application of Formal Concept Analysis to Visualization of the Evaluation of Risks Matrix in Software Engineering Projects. International Journal of Science, Engineering and Technology Research, 2(1).
Khojasteh, Y. (2018). Supply Chain Risk Management. Advanced Tools, Models, and Developments. https://doi.org/https://doi.org/10.1007/978-981-10-4106-8
Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications (Vol. 574). Prentice Hall PTR New Jersey.
Knight, F. (1965). Risk, Uncertainty and Profit. New York: Harper and Row.
Kurmann, A. (2005). Quantifying the uncertainty about the fit of a new Keynesian pricing model. JOURNAL OF MONETARY ECONOMICS, 52(6), 1119–1134. https://doi.org/10.1016/j.jmoneco.2005.08.004
Leyva-Vasquez, M., & Smarandache, F. (2018). Neutrosofia: Nuevos avances en el tratamiento de la incertidumbre.
Liu, B., & Iwamura, K. (1998). Chance constrained programming with fuzzy parameters. Fuzzy Sets and Systems, 94(2), 227–237. https://doi.org/10.1016/S0165-0114(96)00236-9
Mohajeri, A., & Fallah, M. (2016). A carbon footprint-based closed-loop supply chain model under uncertainty with risk analysis: A case study. TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 48, 425–450. https://doi.org/10.1016/j.trd.2015.09.001
Morgan, M., Henrion, M., & Small, M. (1992). Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis.
Neiger, D., Rotaru, K., & Churilov, L. (2009). Supply chain risk identification with value-focused process engineering. Journal of Operations Management, 27(2), 154–168.
Norman, A., & Lindroth, R. (2004). Categorization of Supply Chain Risk and Risk Management. Supply Chain Risk.
Oliver, R. K., & Webber, M. D. (1982). Supply-chain management: logistics catches up with strategy. Outlook, 5(1), 42–47.
Parlitz, U., Schumann-Bischoff, J., & Luther, S. (2014). Quantifying uncertainty in state and parameter estimation. PHYSICAL REVIEW E, 89(5). https://doi.org/10.1103/PhysRevE.89.050902
Paulsson, U. (2004). Supply Chain Risk Management. In Supply Chain Risk (pp. 79–90).
Phillips, E. G., & Elman, H. C. (2015). A stochastic approach to uncertainty in the equations of MHD kinematics. JOURNAL OF COMPUTATIONAL PHYSICS, 284, 334–350. https://doi.org/10.1016/j.jcp.2014.12.002
Rajesh, R., & Ravi, V. (2015). Modeling enablers of supply chain risk mitigation in electronic supply chains: A Grey--DEMATEL approach. Computers & Industrial Engineering, 87, 126–139.
Ramalho, F. D., Ekel, P. Y., Pedrycz, W., Pereira Junior, J. G., & Soares, G. L. (2019). Multicriteria decision making under conditions of uncertainty in application to multiobjective allocation of resources. INFORMATION FUSION, 49, 249–261. https://doi.org/10.1016/j.inffus.2018.12.010
Ritchie, B., & Brindley, C. (2007). Supply chain risk management and performance: A guiding framework for future development. International Journal of Operations & Production Management, 27(3).
Samaniego, Á. (2010). Incertidumbre en los proyectos de investigación y desarrollo (I+D): Un estudio de la literatura. Contaduría y Administración.
Smarandache, F. (1995). Neutrosophic logic and set, mss.
Smarandache, F. (1999). A unifying field in logics. neutrosophy: Neutrosophic probability, set and logic. American Research Press, Rehoboth.
Smarandache, F. (2002). Neutrosophy, A New Branch of Philosophy. Multiple Valued Logic, 8(3), 297–384.
Smarandache, F. (2003). A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrosophic Logic: Neutrosophy, Neutrosophic Set, Neutrosophic Probability. Infinite Study.
Smarandache, F., & Leyva-Vasquez, M. (2018). Fundamentos de la lógica y los conjuntos neutrosóficos y supapel en la inteligencia artificial. Neutrosophic Computing and Machine Learning.
Smith, K., & Grimm, C. (1987). Environmental variation, strategic change and firm performance: A study of railroad deregulation. Strategic Management Journal, 8, 363–37.
Smith, P. (2019). Exploring public transport sustainability with neutrosophic logic. TRANSPORTATION PLANNING AND TECHNOLOGY, 42(3), 257–273. https://doi.org/10.1080/03081060.2019.1576383
Sodhi, M. S., Son, B.-G., & Tang, C. S. (2012). Researchers’ Perspectives on Supply Chain Risk Management. PRODUCTION AND OPERATIONS MANAGEMENT, 21(1), 1–13. https://doi.org/10.1111/j.1937-5956.2011.01251.x
Sullivan, T. J. (2015). Introduction to Uncertainty Quantification. In Texts in Applied Mathematics. https://doi.org/https://doi.org/10.1007/978-3-319-23395-6_1
Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. International Journal of Logistics Research and Applications, 9(1), 33–45. https://doi.org/10.1080/13675560500405584
Thun, J.-H., & Hoenig, D. (2011). An empirical analysis of supply chain risk management in the German automotive industry. International Journal of Production Economics, 131(1), 242–249. https://doi.org/10.1016/J.IJPE.2009.10.010
Trkman, P., Oliveira, M. P. V. de, & McCormack, K. (2016). Value-oriented supply chain risk management: you get what you expect. Industrial Management & Data Systems, 116(5), 1061–1083.
Tummala, R., & Schoenherr, T. (2011). Assessing and managing risks using the supply chain risk management process (SCRMP). Supply Chain Management: An International Journal, 16(6), 474–483.
Wang, H., Wang, C., Wang, Y., Gao, X., & Yu, C. (2017). Bayesian forecasting and uncertainty quantifying of stream flows using Metropolis–Hastings Markov Chain Monte Carlo algorithm. Journal of Hydrology, 549, 476–483. https://doi.org/10.1016/J.JHYDROL.2017.03.073
Yiyi, F. (2018). A review of supply chain risk management: definition, theory, and research agenda. International Journal of Physical Distribution & Logistics Management, 48(3), 205–230. https://doi.org/10.1108/IJPDLM-01-2017-0043
Zadeh, L. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353.
Zadeh, L. . (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1), 3–28. https://doi.org/10.1016/0165-0114(78)90029-5
Zuber, J., Cabral, B. J., McFadyen, I., Mauger, D. M., & Mathews, D. H. (2018). Analysis of RNA nearest neighbor parameters reveals interdependencies and quantifies the uncertainty in RNA secondary structure prediction. RNA, 24(11), 1568–1582. https://doi.org/10.1261/rna.065102.117