Vol. 10 Núm. 2 (2019): Revista Aglala
Artículos Cientificos

Influencia de la inteligencia artificial en la computación forense

Deimer Antonio Romero Madera
Universidad de Cartagena
Luis Carlos Tovar Garrido
Universidad de Cartagena
Pablo Sexto Oyola Quintero
Universidad de Cartagena
Publicado December 15, 2019
Palabras clave
  • Seguridad informática,
  • detección de intrusos,
  • evidencia digital,
  • redes sociales,
  • aprendizaje automático
Cómo citar
[1]
Romero Madera, D.A., Tovar Garrido, L.C. y Oyola Quintero, P.S. 2019. Influencia de la inteligencia artificial en la computación forense. Aglala. 10, 2 (dic. 2019), 244-254. DOI:https://doi.org/10.22519/22157360.1445.

Resumen

El análisis forense digital es el medio utilizado por el investigador cibernético para rastrear al delincuente en caso de que no haya evidencia física. No obstante, la falta de mecanismos adecuados para obtener este objetivo, es un obstáculo que presenta la computación forense. Por tanto, el propósito de realizar este estudio fue determinar la influencia de la inteligencia artificial en la computación forense para resaltar su importancia e identificar ventajas que aporta al realizar un análisis forense digital, donde la investigación fue de tipo cualitativa con enfoque fenomenológico. Como resultado, se obtuvo que la computación forense se ha apoyado en el aprendizaje automático para detectar el comercio y venta de sustancias psicoactivas en redes sociales mediante algoritmos basados en patrones e inferencias sobre los proveedores de sustancias ilícitas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Biedermann, A., Voisard, R., & Taroni, F. (2012). Learning about Bayesian networks for forensic interpretation: An example based on the ‘the problem of multiple propositions’. Science & Justice, 52(3), 191-198.
Bordens, K., y Abbott, B. (2018). Research Design and Methods: A Process Approach. New York: McGraw-Hill Education.
Cahyani, N., Martini, B., Choo, K., y Al‐Azhar, A. (2016). Forensic data acquisition from cloud‐of‐things devices: windows Smartphones as a case study. Concurrency and Computation: Practice and Experience, 29(14).
Cauas, D. (2015). Definición de las variables, enfoque y tipo de investigación. Bogotá: biblioteca electrónica de la universidad Nacional de Colombia.
Chacón, J. W. B., Herrera, J. C. B., y Villabona, M. R. (2013). Revisión y análisis documental para estado del arte: una propuesta metodológica desde el contexto de la sistematización de experiencias educativas. Investigación Bibliotecológica: archivonomía, bibliotecología e información, 27(61), 83-105.
Damshenas, M., Dehghantanha, A., y Mahmoud, R. (2014). A survey on digital forensics trends. International Journal of Cyber-Security and Digital Forensics, 3(4), 209 - 235.
Do, Q., Martini, B., y Choo, K. (2015). A forensically sound adversary model for mobile devices. PloS one, 10(9).
Dunjko, V., y Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics, 81(7).
Erel, I., Stern, L., Tan, C., y Weisbach, M. (2018). Selecting Directors Using Machine Learning. National Bureau of Economic Research, University of Washington, Seattle.
Geradts, Z. (2018). Digital, big data and computational forensics. Forensic Sciences Research, 3(3), 179 - 182.
Grove S. & Gray, J. (2018). Understanding Nursing Research E-Book: Building an Evidence-Based Practice. Elsevier Health Sciences.
Hathaway, O., Crootof, R., Levitz, P., Nix, H., Nowlan, A., Perdue, W., y Spiegel, J. (2012). The law of cyber-attack. California Law Review, 817 - 885.
Helbing, D., Frey, B. S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., y Zwitter, A. (2017). Will Democracy Survive Big Data and Artificial Intelligence? We are in the middle of a technological upheaval that will transform the way society is organized. We must make the right decisions now. Scientific American, 1 - 48.
Hernández, R., Fernández, C., y Baptista, P. (2014). Metodología de la investigación. México. Mc Graw Hill.
Hurtado, J. (2012). “El proyecto de investigación”. (7ª Edición). Ediciones Quirón. Venezuela.
Hutson, M. (2017). Artificial intelligence prevails at predicting Supreme Court decisions. Science.
Kao, D., Wang, Y., Tsai, F. y Chen, C. (2018). Forensic analysis of network packets from penetration test toolkits. In Advanced Communication Technology (ICACT), 2018 20th International Conference on IEEE, 363-368.
Kundur, D., Feng, X., Liu, S., Zourntos, T., y Butler-Purry, K. (2010). Towards a framework for cyber-attack impact analysis of the electric smart grid. In Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference, 244 - 249.
Leavy, P. (2017). Research Design. Nueva York: The Guildford Press.
Liu, C., Singhal, A., y Wijesekera, D. (2016). A probabilistic network forensic model for evidence analysis. In IFIP International Conference on Digital Forensics, 189-210.
Mackey, T., Kalyanam, J., Klugman, J., Kuzmenko, E., & Gupta, R. (2018). Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access. Journal of medical Internet research, 20(4).
Neware, R., y Khan, A. (2018). Cloud Computing Digital Forensic challenges. In IEEE 2nd International conference on Electronics, Communication and Aerospace Technology (ICECA 2018). Coimbatore, India.
Ortiz, G. B. (2018). IBM RPG Software Quality Prediction using Machine Learning Techniques. Universidad César Vallejo.
Palmer, I. N. (2018). Forensic analysis of computer evidence (Doctoral dissertation). University of Illinois at Urbana-Champaign, Illinois, United States.
Presley, S., Landry, J., y Black, M. (2018). Using Project Management Knowledge and Practice to Address Digital Forensic Investigation Challenges. In 2018 KSU Proceedings on Cybersecurity Education, Research and Practice. Georgia, United States.
Quick, D., y Raymond, K. (2014). Impacts of increasing volume of digital forensic data: A survey and future research challenges. Digital Investigation, 11(4), 273-294.
Quick, D., y Raymond, K. (2014). Data reduction and data mining framework for digital forensic evidence: Storage, intelligence, review and archive. Australian Institute of Criminology, 480, 1 - 11.
Quick, D., y Raymond, K. (2016). Big forensic data management in heterogeneous distributed systems: quick analysis of multimedia forensic data. Software: Practice and Experience, 47(8), 1095 - 1109.
Quick, D. y Raymond, K. (2018). Digital forensic intelligence: Data subsets and Open Source Intelligence (DFINTOSINT): A timely and cohesive mix. Future Generation Computer Systems, 78(2), 558 - 567.
Satpathy, S., Mallick, C., & Pradhan, S. K. (2018). Big Data Computing Application in Digital Forensics Investigation and Cyber Security. International Journal of Computer Science and Mobile Applications, 129 - 136.
Singh, N., Agrawal, A., & Khan, R. A. (2018). Voice Biometric: A Technology for Voice Based Authentication. Advanced Science, Engineering and Medicine, 10(1), 1 - 6.
Steels, L., y Brooks, R. (2018). The Artificial Life Route to Artificial Intelligence Building Embodied, Situated Agents. London, England: Routledge.
Stelly, C., y Roussev, V. (2018). Nugget: A digital forensics language. Digital Investigation, 24, 38- 47.
Tracy, S. (2013). Qualitative Research Methods: Collecting Evidence, Crafting Analysis, communicating impact. Malden, USA: Wiley.
Tri, M., Riadi, I., y Prayudi, Y. (2018). Forensics Acquisition and Analysis Method of IMO Messenger. International Journal of Computer Applications, 179(47), 9 - 14.
Valenga, F., Britos, P. V., Perversi, I., Fernández, E., Merlino, H., & García Martínez, R. (2007). Aplicación de minería de datos para la exploración y detección de patrones delictivos en Argentina. In XIII Congreso Argentino de Ciencias de la Computación.
Yusoff, Y., Ismail, R., y Hassan, Z. (2011). Common phases of computer forensics investigation models. International Journal of Computer Science & Information Technology, 3(3), 17-31.