Vol. 13 Núm. 2 (2022): REVISTA AGLALA
Artículos Cientificos

Un enfoque vectorial autoregresivo para estimar la respuesta de oferta de yuca

Susan Cancino
Universidad de Pamplona
Giovanni Orlando Cancino Escalante
Universidad de Pamplona
Daniel Francisco Cancino Ricketts
Pontificia Universidad Javeriana. Bogotá

Publicado 2022-12-15

Palabras clave

  • modelo vector autorregresivo,
  • descomposición de la varianza,
  • impulso-respuesta,
  • respuesta oferta yuca

Cómo citar

Cancino, S., Cancino Escalante, G. O., & Cancino Ricketts, D. F. (2022). Un enfoque vectorial autoregresivo para estimar la respuesta de oferta de yuca. Aglala, 13(2), 77–83. Recuperado a partir de https://revistas.curn.edu.co/index.php/aglala/article/view/2199

Resumen

La producción de yuca en Colombia es una importante fuente de ingresos para los pequeños agricultores y sus familias. Por consiguiente, el propósito del estudio fue cuantificar la reacción de la oferta de yuca ante cambios en su propio precio y producción utilizando datos de series de tiempo de 1996-2016. Se seleccionó un diseño de investigación cuantitativo, correlacional y no experimental y se empleó como metodología el modelo de vectores autorregresivos. Igualmente, se utilizó la función impulso-respuesta y la varianza de descomposición para verificar el impacto de la transmisión de precios y la interacción entre variables. Los resultados empíricos mostraron que los signos y la magnitud de los coeficientes fueron estadísticamente significativos y que la elasticidad precio de la oferta fue mayor a la unidad (1.88). Además, el análisis de descomposición de la varianza y de impulso-respuesta sugirieron que el precio posee un papel importante en la variabilidad de la respuesta de la oferta de yuca

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Abu, O. (2017). Vector autoregressive (VAR) analysis of the dynamic link among producer prices, area and yield of cassava in Nigeria. Annual National Conference of the Nigerian Association of Agricultural Economists. Abeokuta, Nigeria.
  2. Agronet. (2018). Colombian Ministry of Agriculture and Rural Development. Retrieved August 2020, from <https://www.agronet.gov.co/estadistica/Paginas/home.aspx
  3. Aristizábal, J., García, J., & Ospina, B. (2017). Refined cassava flour in bread making: a review. Ingeniería e Investigación, 37(1), 25-33. doi: http://dx.doi.org/10.15446/ing.investig.v37n1.57306
  4. Askaria, H., & Cummings, J. (1977). Estimating agricultural supply response with the Nerlove model: A survey. Economic Review, 18(2), 257-292. doi: https://doi.org/10.2307/2525749
  5. Asmah, E. (2013). Sources of real exchange rate fluctuations in Ghana. American Journal of Economics, 3(6), 291-302. https://doi:10.5923/j.economics.20130306.08
  6. FAO-STAT (2018). Food and Agriculture Organization of United Nations Retrieved October 5, 2020, from http://www.fao.org/faostat/es/#data
  7. Fuller, D., & Dickey, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431.
  8. Guira, F., Koussao, S., Kabore, D., Sawadogo-Lingani, H., Traore, Y., & Savadogo, A. (2016). Origins, production, and utilization of cassava in Burkina Faso, a contribution of a neglected crop to household food security. Food Science and Nutrition, 5(3), 1-9.
  9. Gujarati, D. (2003). Basic Econometrics. New York, USA: McGraw-Hill.
  10. Hamilton, J. (1994). Time Series Analysis. New Jersey, USA: Princeton University Press.
  11. Henry, G., & Hershey, C. (2002). Cassava in South America and the Caribbean. In R. Hillocks, J. Thresh, & A. Bellotti (Eds.), Cassava: Biology, Production and Utilization (p. 352). Wallingford, UK: CABI.
  12. Ikuemonisan, E., Mafimisebi, T., Ajibefun, I., & Adenegan, K. (2020). Cassava production in Nigeria: trends, instability and decomposition analysis (1970–2018). Heliyon, 6(10), 1-9.
  13. Johansen, S. (1988). Satistical analysis of cointegrating vectors. Journal of Economic Dynamics, 12(2), 231-254.
  14. Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford Bulletin of Economic and Statistics, 52, 169-210.
  15. Khan, S., Faisal, M., Ul Haq, Z., Fahad, S., Ali, G., Khan, A., & Khan, I. (2019). Supply response of rice using time series data: Lessons from Khyber Pakhtunkhwa Province, Pakistan. Journal of the Saudi Society of Agricultural Sciences, 18(4), 458-461.
  16. Kohli, D. (1996). Supply response in agriculture: A review of methodologies. No 63, Working Papers. National Council of Applied Economic Research.
  17. Lajdová, Z., Kapusta, J. & Bielik, P. (2015) Price linkages between biofuels and food commodities. Proceedings of the X International Conference on Applied Business Research, Mendel University in Brno, Czech Republic
  18. Lanne, M., & Nyberg, H. (2016). Generalized forecast error variance decomposition for linear and nonlinear multivariate models. Oxford Bulletin of Economics and Statistics, 78(4), 595-603.
  19. Legg, J., Somado, E., & Barker, I. (2014). A global alliance declaring war on cassava viruses in Africa. Food Security, 6(2), 231-248.
  20. Lutkepohl, H. (2005). New Introduction to Multiple Times Series Analysis. New York: Springer.
  21. Maddala , G., & Kim, I. (1998). Unit roots, co-integration and structural change. Cambridge, UK: Cambridge University Press.
  22. Mankiw, G. (2008). Principles of Microeconomics. Mason, USA: Cengage Learning.
  23. Colombian Ministry of Agriculture and Rural Development. (2018). Cassava Figures. Retrieved October 5, 2020, from https://sioc.minagricultura.gov.co/Yuca/Documentos/2015-12-30%20Cifras%20Sectoriales.pdf
  24. Montagnac, J., Davis, C., & Tanumihardjo, S. (2009). Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Comprehensive Reviews in Food Science and Food Safety, 8, 1-14.
  25. Mose, L., Burger, K., & Kuvyenhoven, A. (2007). Aggregate supply response to price incentives: the case of smallholder maize production in Kenya. African Crop Science, 8, 1271-1275.
  26. Mythili, G. (2008). Acreage and yield response for major crops in the pre and post-reform periods in Inida: A dynamic panel data approach. Mumbai, India: Indira Gandhi Institute of Development Research.
  27. Nerlove, M. (1958). Distributed lags and estimation of long-run supply and demand elasticities: Theoretical considerations. Agricultural and Applied Economics Association, 40(2), 301-311.
  28. Obayelu, A., & Ebute, S. (2016). Assessment of cassava supply response in Nigeria using vector error correction model (VECM). Agricultura, 11(1-2), 79-86.
  29. Onwueme, I. C. (2002). Cassava in Asia and the Pacific. In R. Hillocks, J. Thresh, & A. Bellotti (Eds.), Cassava: Biology, Production and Utilization (p. 352). Wallingford, UK: CABI.
  30. Ozkan, B., Rahmive, C., & Kizilay, H. (2011). Supply response for wheat in Turkey. New Medit, 10, 34-38.
  31. Patiño, B., & Best, R. (2002). Strategic alliances of cassava farmers with private and public sectors: a new approach. 9th JIRCAS International Symposium. Tsukuba, Japan.
  32. Pérez, D., Mora, R., & López-Carrascal, C. (2019). Conservation of the cassava diversity in the traditional cultivation systems of the Amazon. Acta Biologica Colombiana, 24(2), 202-212.
  33. Phillips, P., & Perron, P. (1988). Testing for a unit root in times series. Biometrika, 75(2), 335-346.
  34. Rainier, T. (2000). Estimating the aggregate agricultural supply response: a survey of techniques and results for developing countries. Kiev: Institute of World Economics.
  35. Shah, C., & Ghonasgi, N. (2016). Determinants and forecast of price level in India: a VAR framework. Journal of Quantitative Economics, 14, 57-86.
  36. Sims, C. (1980). Macroeconomics and reality. Econometrica, 48, 1- 48.
  37. Tripathi, A., & Prasad, A. (2009). Estimation of agricultural supply response by cointegration approach. The Indian Economic Journal, 57(1), 106-131.
  38. Varian, H. (2016). Microeconomía Intermedia. Barcelona, Spain: Antoni Bosch.
  39. Zhao, X., & Qian, G. (2014). On multivariate time series model selection involving many candidate VAR models. European Journal of Pure and Applied Mathematics, 7(1), 1-21.