- Ingeniería Tisular,
- Pulpa Dental,
- Células Madre,
- Regeneración
Derechos de autor 2020 Ciencia y Salud Virtual

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Resumen
Introducción. La odontología actual experimenta una remarcable evolución gracias al desarrollo de alternativas que pretenden conservar la vitalidad pulpar. Una opción es la ingeniería tisular, que plantea la incorporación de células madres en un biomaterial para reconstruir un tejido con una estructura y función similar al original. Objetivo. Describir las estrategias de la ingeniería tisular enfocadas a la regeneración de la pulpa dental. Método. Fue realizada una revisión bibliográfica en las bases de datos Medline, EBSCO-Host y Scopus empleando los términos: Dental tissue engineering and/or strategy y Dental pulp regeneration entre los años 2008 a 2019. De los 6752 artículos encontrados, 85 fueron seleccionados y permitieron la descripción de tres estrategias de ingeniería tisular empleadas en la regeneración pulpar: la migración de células madres, la utilización de una matriz celular y el empleo de una matriz biomimética. Resultados: Se destacó la importancia de las células madres de origen dental, matrices y posibles combinaciones entre ellas. Conclusiones. Las estrategias descritas hacen uso de células madre principalmente de origen dental, destacando que la combinación de éstas con materiales bioactivos, hacen factible la formación de una pulpa dental equivalente in vitro e in vivo hasta ahora en etapa experimental.
Descargas
Citas
- Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004; 15(1):13–27. https://doi.org/10.1177/154411130401500103
- Stanley HR, White CL, McCray L. The rate of tertiary (reparative) dentine formation in the human tooth. Oral Surg Oral Med Oral Pathol Oral Radiol. 1966;21(2):180–9. https://doi.org/10.1016/0030-4220(66)90240-4
- Huang GT-J. The Hidden Treasure in Apical Papilla: The Potential Role in Pulp/Dentin Regeneration and BioRoot Engineering. J Endod. 2008;1;34(6):645–51. https://doi.org/10.1016/j.joen.2008.03.001
- Tavares PBL. Prevalence of Apical Periodontitis in Root Canal–Treated Teeth from an Urban French Population: Influence of the Quality of Root Canal Fillings and Coronal Restorations. J Endod. 2009;1;35(6):810–3. https://doi.org/10.1016/j.joen.2009.03.048
- Barreto MS, Moraes R do A, Rosa RA da, Moreira CHC, Só MVR, Bier CAS. Vertical Root Fractures and Dentin Defects: Effects of Root Canal Preparation, Filling, and Mechanical Cycling. J Endod. 2012;38(8):1135–9. https://doi.org/10.1016/j.joen.2012.05.002
- Vishwanathan PK, Muliyar S, Chavan P, Reddy PM, Reddy TPK, Nilawar S. Comparative evaluation of the fracture resistance of teeth prepared with rotary system, filled with single cone gutta-percha and laterally condensed with zinc oxide eugenol and resin based (AH26) sealers to that of Resilon. J Contemp Dent Pract. 2012;1;13(6):773–81. https://doi.org/10.5005/jp-journals-10024-1228
- Harrison RH, St-Pierre J-P, Stevens MM. Tissue Engineering and Regenerative Medicine: A Year in Review. Tissue Eng Part B Rev. 2014;20(1):1–16. https://doi.org/10.1089/ten.teb.2013.0668
- Albuquerque MTP, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based Strategies for Regenerative Endodontics. J Dent Res. 2014;93(12):1222–31. https://doi.org/10.1177/0022034514549809
- Kaushik SN, Kim B, Walma AMC, Choi SC, Wu H, Mao JJ, et al. Biomimetic microenvironments for regenerative endodontics. Biomater Res. 2016;20(1):14. https://doi.org/10.1186/s40824-016-0061-7
- Patil R, Kumar BM, Lee W-J, Jeon R-H, Jang S-J, Lee Y-M, et al. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp Cell Res. 2014;320(1):92–107. https://doi.org/10.1016/j.yexcr.2013.10.005
- Bianco P, Robey PG, Simmons PJ. Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell. 2008;10;2(4):313–9. https://doi.org/10.1016/j.stem.2008.03.002
- Ilic D, Ogilvie C. Concise Review: Human Embryonic Stem Cells—What Have We Done? What Are We Doing? Where Are We Going? Stem Cells. 2017;35(1):17–25. https://doi.org/10.1002/stem.2450
- Das S, Bonaguidi M, Muro K, Kessler JA. Generation of embryonic stem cells: limitations of and alternatives to inner cell mass harvest. Neurosurg focus. 2008;24(3–4):E4. DOI: 10.3171/FOC/2008/24/3-4/E3
- Sunil PM. Induced pluripotent stem cells in dentistry. J Pharm Bioallied Sci. 2016;8(Suppl 1):S23–7. DOI: 10.4103/0975-7406.191960
- Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, et al. Elevated Coding Mutation Rate During the Reprogramming of Human Somatic Cells into Induced Pluripotent Stem Cells. Stem Cells. 2012;30(3):435–40. https://doi.org/10.1002/stem.1011
- Tomasello L, Mauceri R, Coppola A, Pitrone M, Pizzo G, Campisi G, et al. Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: a potential application for bone formation. Stem Cell Res Ther. 2017;1;8(1):179. https://doi.org/10.1186/s13287-017-0633-z
- Ibarretxe G, Crende O, Aurrekoetxea M, García-Murga V, Etxaniz J, Unda F. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration. Stem Cells Int. 2012; 2012:103503. https://doi.org/10.1155/2012/103503
- Tsai AI, Hong H-H, Lin W-R, Fu J-F, Chang C-C, Wang I-K, et al. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp. Biomed Res Int. 2017; 2017:2851906. https://doi.org/10.1155/2017/2851906
- Lima RL, Holanda-Afonso RC, Moura-Neto V, Bolognese AM, DosSantos MF, Souza MM. Human dental follicle cells express embryonic, mesenchymal and neural stem cells markers. Arch Oral Biol. 2017; 73:121–8. https://doi.org/10.1016/j.archoralbio.2016.10.003
- Alvarez R, Lee H-L, Wang C-Y, Hong C. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers. Int J Oral Sci. 2015;18;7(4):213–9. https://doi.org/10.1038/ijos.2015.42
- Akiyama K, Chen C, Gronthos S, Shi S. Lineage differentiation of mesenchymal stem cells from dental pulp, apical papilla, and periodontal ligament. Methods Mol Biol. 2012; 887:111–21. https://doi.org/10.1007/978-1-61779-860-3_11
- Piva E, Tarlé SA, Nör JE, Zou D, Hatfield E, Guinn T, et al. Dental Pulp Tissue Regeneration Using Dental Pulp Stem Cells Isolated and Expanded in Human Serum. J Endod. 2017;43(4):568–74. https://doi.org/10.1016/j.joen.2016.11.018
- Pavan Kumar B, Ram Mohan S, Mohan AP, Jeevan Kumar KA, Yashwanth Yadav B. Versatility of Pleuripotent Undifferentiated Stem Cells Aspirated from Bone Marrow and its Applications in Oral and Maxillofacial Surgery. J Maxillofac Oral Surg. 2016;15(1):1–11. https://doi.org/10.1007/s12663-015-0793-2
- Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, et al. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann Biomed Eng. 2016;44(6):1908–20. https://doi.org/10.1007/s10439-016-1594-6
- Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017; 111:1–26. https://doi.org/10.1016/j.mser.2016.11.001
- Paduano F, Marrelli M, Alom N, Amer M, White L, Shakesheff K, et al. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed. 2017;28(8):730-748. https://doi.org/10.1080/09205063.2017.1301770
- Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, et al. Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Sci Rep. 2018;5;8(1):14889. https://doi.org/10.1038/s41598-018-33245-w
- Pandit N, Malik R, Philips D. Tissue engineering: A new vista in periodontal regeneration. J Indian Soc Periodontol. 2011;15(4):328-37. https://doi.org/10.4103/0972-124X.92564
- Maraldi T, Riccio M, Pisciotta A, Zavatti M, Carnevale G, Beretti F, et al. Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem Cell Res Ther. 2013; 21;4(3):53. https://doi.org/10.1186/scrt203
- Fahimipour F, Dashtimoghadam E, Rasoulianboroujeni M, Yazdimamaghani M, Khoshroo K, Tahriri M, et al. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dent Mater. 2018;34(2):209–20. https://doi.org/10.1016/j.dental.2017.10.001
- Kwon DY, Kwon JS, Park SH, Park JH, Jang SH, Yin XY, et al. A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci Rep. 2015;3;5:12721. https://doi.org/10.1038/srep12721
- Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J. 2018;51(4):405–19. https://doi.org/10.1111/iej.12868
- Fayazi S, Takimoto K, Diogenes A. Comparative Evaluation of Chemotactic Factor Effect on Migration and Differentiation of Stem Cells of the Apical Papilla. J Endod. 2017;1;43(8):1288–93. https://doi.org/10.1016/j.joen.2017.03.012
- Steindorff MM, Lehl H, Winkel A, Stiesch M. Innovative approaches to regenerate teeth by tissue engineering. Arch Oral Biol. 2014;1;59(2):158–66. https://doi.org/10.1016/j.archoralbio.2013.11.005
- Y Kim J, Xin X, K Moioli E, Chung J, Lee C, Chen M, et al. Regeneration of Dental-Pulp-like Tissue by Chemotaxis-Induced Cell Homing. Tissue Eng Part A. 2010;16(10):3023-31. https://doi.org/10.1089/ten.tea.2010.0181
- Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, et al. Complete Pulp Regeneration After Pulpectomy by Transplantation of CD105 + Stem Cells with Stromal Cell-Derived Factor-1. Tissue Eng Part A. 2011;17(15-16):1911-20. https://doi.org/10.1089/ten.tea.2010.0615
- Huang C-C, Narayanan R, Warshawsky N, Ravindran S. Dual ECM Biomimetic Scaffolds for Dental Pulp Regenerative Applications. Front Physiol. 2018; 25;9:495. https://doi.org/10.3389/fphys.2018.00495
- Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21(3–4):550–63. https://doi.org/10.1089/ten.tea.2014.0154
- Sancilio S, Gallorini M, Di Nisio C, Marsich E, Di Pietro R, Schweikl H, et al. Alginate/Hydroxyapatite-Based Nanocomposite Scaffolds for Bone Tissue Engineering Improve Dental Pulp Biomineralization and Differentiation. Stem Cells Int. 2018;2; 2018:9643721. https://doi.org/10.1155/2018/9643721
- Zheng L, Yang F, Shen H, Hu X, Mochizuki C, Sato M, et al. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials. 2011;32(29):7053–9. https://doi.org/10.1016/j.biomaterials.2011.06.004
- Xie X-H, Wang X-L, Zhang G, He Y-X, Wang X-H, Liu Z, et al. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Biomed Mater. 2010;5(5):054109. https://doi.org/10.1088/1748-6041/5/5/054109
- Nam S, Won J-E, Kim C-H, Kim H-W. Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. J Tissue Eng. 2011; 2011:812547. https://doi.org/10.4061/2011/812547
- Honda MJ, Fong H, Iwatsuki S, Sumita Y, Sarikaya M. Tooth-forming potential in embryonic and postnatal tooth bud cells. Med Mol Morphol. 2008;41(4):183-92. https://doi.org/10.1007/s00795-008-0416-9
- Ravindran S, Song Y, George A. Development of Three-Dimensional Biomimetic Scaffold to Study Epithelial–Mesenchymal Interactions. Tissue Eng Part A. 2010;28;16(1):327–42. https://doi.org/10.1089/ten.tea.2009.0110
- Tatsuhiro F, Seiko T, Yusuke T, Reiko T-T, Kazuhito S. Dental Pulp Stem Cell-Derived, Scaffold-Free Constructs for Bone Regeneration. Int J Mol Sci. 2018;22;19(7). https://doi.org/10.3390/ijms19071846
- Yu J, Shi J, Jin Y. Current Approaches and Challenges in Making a Bio-Tooth. Tissue Eng Part B Rev. 2008;14(3):307–19. https://doi.org/10.1089/ten.teb.2008.0165
- Lechguer AN, Kuchler-Bopp S, Hu B, Haïkel Y, Lesot H. Vascularization of Engineered Teeth. J Dental Res. 2008;87(12):1138–43. https://doi.org/10.1177/154405910808701216
- Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue Engineering of Tooth Crown, Root, and Periodontium. Tissue Eng. 2006;12(8):2069–75. https://doi.org/10.1089/ten.2006.12.2069
- Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009;106(32):13475–13480. https://doi.org/10.1073/pnas.0902944106
- Harrington J, Sloan AJ, Waddington RJ. Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow. Connect Tissue Res. 2014;55(sup1):62–7. https://doi.org/10.3109/03008207.2014.923859